Dual Quaternion

Aus DGL Wiki
Wechseln zu: Navigation, Suche
Hinweis: Dieser Artikel ist noch unvollständig.
(Mehr Informationen/weitere Artikel)

Mathematische Hintergründe fehlen. Das ist bisher nur aus Sicht eines Programmierers geschrieben.

Incomplete.jpg

Dual Quaternions (Duale Quaternionen) sind eine Erweiterung der hamiltonschen Quaternionen um die duale Komponente. Geometrisch betrachtet führen duale Quaternionen die Translation ein, während einfache Quaternionen nur Rotation darstellen können. In einem Dual Quaternion lassen sich also sowohl Rotation als auch Translation speichern.

Definition

Ein Dual Quaternion dq ist wie folgt definiert:

dq = r + e*d

wobei r und d Quaternionen sind und e die duale Einheit mit der Eigenschaft

e² = e*e = 0

r nennt man reellen Teil und d heißt dualer Teil von dq.

Arithmetik

Addition

Die Addition zweier Dual Quaternions geschieht komponentenweise:

dq1 = r1 + e*d1
dq2 = r2 + e*d2
dq1 + dq2 = r1+r2 + e*(d1+d2)

Die Subtraktion funktioniert analog.

Multiplikation

Die Multiplikation mit einem anderen Dual Quaternion ist etwas komplizierter. Seien dq, dq1 und dq2 definiert wie bei oben. Dann gilt:

dq = dq1 * dq2
<=>
r = r1 * r2
d = (r1 * d2) + (d1 * r2)

Wobei beachtet werden sollte, dass hier jeweils drei Multiplikationen von Quaternionen (also nicht etwa das Skalarprodukt o.ä.) stattfinden. Wie schon bei Quaternionen und Matrizen gilt das Kommutativgesetz hier nicht! Das heißt dq1*dq2 ist nicht immer gleich dq2*dq1.

Die Multiplikation "verkettet" zwei Dual Quaternions miteinander, genau wie bei Matrizen. Wenn dq1 also z.B. eine Rotation speichert und dq2 eine Translation, so wird ein Vektor bei der Transformation mit deren Produkt erst rotiert und danach transliert.

Operationen in der 3D-Grafik

Warnung.png Im Folgenden ist es wichtig festzulegen, in welcher Reihenfolge man die Komponenten der Quaternionen speichert.

Zur Erinnerung: Ein Quaternion q hat folgende Form:

q = a +b*i +c*j +d*k

Während im Artikel Quaternion eine andere Reihenfolge gewählt wurde, speichern wir Quaternionen nun als 4-Komponenten-Vektor (in GLSL-Schreibweise vec4), wobei

x = b
y = c
z = d
w = a  // letzte Komponente!!!

Dies entspricht der offenbar am weitesten verbreiteten Reihenfolge.

Setzen der Translation

Wir möchten, dass dq Vektoren um den Translationsvektor t verschiebt.

r.x = r.y = r.z = 0  // Identitäts-Quaternion
r.w = 1              // für den reellen Teil

d.x = t.x * 0.5
d.y = t.y * 0.5
d.z = t.z * 0.5
d.w = 0

Setzen der Rotation

Wir möchten, dass mit dq transformierte Vektoren um den Winkel phi um die Achse A gedreht wird.

r.x = A.x * sin(phi)
r.y = A.y * sin(phi)
r.z = A.z * sin(phi)
r.w = cos(phi)

d.x = d.y = d.z = d.w = 0

Transformation eines Vektors

Wir möchten den Vektor v transformieren und erhalten den resultierenden Vektor v'

v' = v + 2 * (cross(r.xyz,  cross(r.xyz, v) + r.w*v) + r.w*d.xyz - d.w*r.xyz + cross(r.xyz, d.xyz))

Interpolation

Der Hauptgrund, warum man in einigen Anwendungen Dual Quaternions gewöhnlichen Matrizen vorzieht, ist die gute Interpolierbarkeit. Wir möchten dq1 und dq2 linear interpolieren:

dq = dq1*(1-f) + dq2*f
<=>
r = r1*(1-f) + r2*f
d = d1*(1-f) + d2*f

Dies entspricht der GLSL-Funktion mix().

Normalisieren

Nach der Interpolation besteht die Gefahr, dass das Dual Quaternion nicht mehr normalisiert ist. Das lässt sich beheben:

r = normalize(r1)        // normalize() wie in GLSL
d = d1 - r * dot(r, d1)

So wird dq die normalisierte Form von dq1. Die Reihenfolge der beiden Zeilen darf nicht vertauscht werden.

Vergleich zu anderen Darstellungen

4x4-Matrix

  • Ein Dual Quaternion benötigt nur halb so viel Speicherplatz wie eine 4x4-Matrix (2 statt 4 uniform-Register)
  • Eine Matrix lässt sich im Allgemeinen nicht sinnvoll interpolieren. Die lineare Interpolation von Dual Quaternions liefert dagegen genau das Ergebnis, was man i.A. erwartet und v.a. für Charakteranimation mit BoneWeights braucht.
  • Die Transformation eines Vektors mit einer Matrix ist deutlich schneller (4 mal dot) als mit einem Dual Quaternion (siehe oben).

Quaternion + Translationsvektor

  • Ein Dual Quaternion benötigt theoretisch einen float mehr, da ein Translationsvektor nur drei Komponenten hat. Bei der Anzahl der Shader-Register sind beide Lösungen gleichwertig.
  • Interpolation: Die lineare Interpolation führt bei beiden Lösungen zum gleichen Ergebnis.
  • Die Transformation eines Vektors v mit einem Quaternion q und der anschließenden Addition des Translationsvektors t ist etwas schneller als die Anwendung eines Dual Quaternions auf den Vektor:
v' = v + 2 * cross(q.xyz,  cross(q.xyz, v) + q.w*v) + t;

Links

Eine umfangreiche Implementation von DualQuaternions in C++ (In den Dateien DualQuaternion.cpp, DualQuaternion.hh, DualQuaternionInl.hh, DualQuaternionOperators.hh)
A Beginners Guide to Dual Quaternions
Kavan 2006, Dual Quaternions for Rigid Transformation Blending